Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 179: 7-17, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36977444

RESUMO

Single-cell approaches have become an increasingly popular way of understanding the genetic factors behind disease. Isolation of DNA and RNA from human tissues is necessary to analyze multi-omic data sets, providing information on the single-cell genome, transcriptome, and epigenome. Here, we isolated high-quality single-nuclei from postmortem human heart tissues for DNA and RNA analysis. Postmortem human tissues were obtained from 106 individuals, 33 with a history of myocardial disease, diabetes, or smoking, and 73 controls without heart disease. We demonstrated that the Qiagen EZ1 instrument and kit consistently isolated genomic DNA of high yield, which can be used for checking DNA quality before conducting single-cell experiments. Here, we provide a method for single-nuclei isolation from cardiac tissue, otherwise known as the SoNIC method, which allows for the isolation of single cardiomyocyte nuclei from postmortem tissue by nuclear ploidy status. We also provide a detailed quality control measure for single-nuclei whole genome amplification and a pre-amplification method for confirming genomic integrity.


Assuntos
Núcleo Celular , Miocárdio , Humanos , Núcleo Celular/genética , Miócitos Cardíacos , DNA , RNA/genética , Análise de Célula Única/métodos
2.
bioRxiv ; 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36778433

RESUMO

Single-cell approaches have become an increasingly popular way of understanding the genetic factors behind disease. Isolation of DNA and RNA from human tissues is necessary to analyze multi-omic data sets, providing information on the single-cell genome, transcriptome, and epigenome. Here, we isolated high-quality single-nuclei from postmortem human heart tissues for DNA and RNA analysis. Postmortem human tissues were obtained from 106 individuals, 33 with a history of myocardial disease, diabetes, or smoking, and 73 controls without heart disease. We demonstrated that the Qiagen EZ1 instrument and kit consistently isolated genomic DNA of high yield, which can be used for checking DNA quality before conducting single-cell experiments. Here, we provide a method for single-nuclei isolation from cardiac tissue, otherwise known as the SoNIC method, which allows for the isolation of single cardiomyocyte nuclei from postmortem tissue by nuclear ploidy status. We also provide a detailed quality control measure for single-nuclei whole genome amplification and a pre-amplification method for confirming genomic integrity.

3.
J Biol Chem ; 295(32): 11068-11081, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32540969

RESUMO

The human cytochrome P450 family 11 subfamily B member 2 (hCYP11B2) gene encodes aldosterone synthase, the rate-limiting enzyme in the biosynthesis of aldosterone. In some humans, hCYP11B2 undergoes a unique intron conversion whose function is largely unclear. The intron conversion is formed by a replacement of the segment of DNA within intron 2 of hCYP11B2 with the corresponding region of the hCYP11B1 gene. We show here that the intron conversion is located in an open chromatin form and binds more strongly to the transcriptional regulators histone acetyltransferase P300 (p300), NFκB, and CCAAT enhancer-binding protein α (CEBPα). Reporter constructs containing the intron conversion had increased promoter activity on transient transfection in H295R cells compared with WT intron 2. We generated humanized transgenic (TG) mice containing all the introns, exons, and 5'- and 3'-flanking regions of the hCYP11B2 gene containing either the intron conversion or WT intron 2. We found that TG mice containing the intron conversion have (a) increased plasma aldosterone levels, (b) increased hCYP11B2 mRNA and protein levels, and (c) increased blood pressure compared with TG mice containing WT intron 2. Results of a ChIP assay showed that chromatin obtained from the adrenals of TG mice containing the intron conversion binds more strongly to p300, NFκB, and CEBPα than to WT intron 2. These results uncover a functional role of intron conversion in hCYP11B2 and suggest a new paradigm in blood pressure regulation.


Assuntos
Pressão Sanguínea/genética , Citocromo P-450 CYP11B2/genética , Íntrons , Transcrição Gênica/genética , Aldosterona/sangue , Animais , Citocromo P-450 CYP11B2/metabolismo , Genes Reporter , Humanos , Camundongos , Camundongos Transgênicos , RNA Mensageiro/genética
4.
J Biol Chem ; 294(31): 11829-11839, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31201268

RESUMO

Angiotensinogen (AGT) is the precursor of one of the most potent vasoconstrictors, peptide angiotensin II. Genome-wide association studies have shown that two A/G polymorphisms (rs2493134 and rs2004776), located at +507 and +1164 in intron I of the human AGT (hAGT) gene, are associated with hypertension. Polymorphisms of the AGT gene result in two main haplotypes. Hap-I contains the variants -217A, -6A, +507G, and +1164A and is pro-hypertensive, whereas Hap-II contains the variants -217G, -6G, +507A, and +1164G and does not affect blood pressure. The nucleotide sequence of intron I of the hAGT gene containing the +1164A variant has a stronger homology with the hepatocyte nuclear factor 3 (HNF3)-binding site than +1164G. Here we found that an oligonucleotide containing +1164A binds HNF3ß more strongly than +1164G and that Hap-I-containing reporter gene constructs have increased basal and HNF3- and glucocorticoid-induced promoter activity in transiently transfected liver and kidney cells. Using a knock-in approach at the hypoxanthine-guanine phosphoribosyltransferase locus, we generated a transgenic mouse model containing the human renin (hREN) gene and either Hap-I or Hap-II. We show that transgenic animals containing Hap-I have increased blood pressure compared with those containing Hap-II. Moreover, the transcription factors glucocorticoid receptor, CCAAT enhancer-binding protein ß, and HNF3ß bound more strongly to chromatin obtained from the liver of transgenic animals containing Hap-I than to liver chromatin from Hap-II-containing animals. These findings suggest that, unlike Hap-II variants, Hap-I variants of the hAGT gene have increased transcription rates, resulting in elevated blood pressure.


Assuntos
Angiotensinogênio/metabolismo , Pressão Sanguínea , Fator 3-beta Nuclear de Hepatócito/metabolismo , Angiotensinogênio/sangue , Angiotensinogênio/genética , Animais , Sítios de Ligação , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Cromatina/metabolismo , Células Hep G2 , Humanos , Íntrons , Desequilíbrio de Ligação , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único , Ligação Proteica , RNA Mensageiro/metabolismo , Receptores de Glucocorticoides/metabolismo , Renina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...